
Speeduino Miata / MX5 Manual
This manual is compiled from the Speeduino documentation wiki:

https://speeduino.com/wiki/index.php
Sat Feb 16 2019

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Connecting to TunerStudio . 1

1.2.1 Downloading Tuner Studio . 2
1.2.2 Setting up your project . 2

1.3 Creating a TunerStudio Project . 5
1.3.1 Configuring TunerStudio Project Properties . 5
1.3.2 Settings Tab . 6
1.3.3 Can Devices Tab . 8

2 Hardware 9
2.1 MX5 PNP . 9

2.1.1 Introduction . 9
2.1.2 Hardware requirements . 9
2.1.3 Configuration and start . 13

3 Configuration 15
3.1 Engine Constants . 15

3.1.1 Overview[edit] . 15
3.1.2 Settings[edit] . 16

3.2 Injector Characteristics . 17
3.2.1 Overview . 17
3.2.2 Settings . 17

3.3 IAT Density . 17
3.3.1 Overview . 17
3.3.2 Settings . 18

3.4 Acceleration Enrichment . 18
3.4.1 Overview . 18
3.4.2 Theory . 18

3.5 Rev Limits . 19
3.5.1 Overview . 19
3.5.2 Settings . 20

3.6 Flex Fuel . 20

i

ii CONTENTS

3.6.1 Overview . 20
3.6.2 Hardware . 20
3.6.3 Tuning . 21

3.7 Spark Settings . 22
3.7.1 Overview . 22
3.7.2 Settings . 22

3.8 Dwell . 24
3.9 Overview . 24
3.10 Settings . 25

3.10.1 Voltage correction . 26
3.11 Cranking . 26

3.11.1 Overview . 26
3.11.2 Settings . 27

3.12 Warmup . 28
3.12.1 Overview . 28
3.12.2 Settings . 28

3.13 Idle . 29
3.13.1 Overview . 29

4 Updating firmware 36
4.1 Compiling and Installing Firmware . 36

4.1.1 Latest Stable Firmware . 36
4.1.2 Installation - Easy Method . 36
4.1.3 Manually Compiling . 36

Chapter 1

Introduction

1.1 Introduction

This manual covers the hardware (sensors, wiring etc), software configuration and tuning elements related to running
a Speeduino unit. When beginning with Speeduino, particularly if it is your first time installing and configuring an
engine management system, this manual will assist in understanding Speeduino’s capabilities and how it should be
installed, both in terms of hardware and software/firmware.
Whilst this document will assist in providing information related to Speeduino’s configuration, it does not cover
advanced engine tuning, fuel / ignition strategies etc. As with any changes to engine management, the possibility of
damage to hardware is very real should a system be configured incorrectly.

Getting Started

In terms of starting out with Speeduino, it is generally recommended to first upload the firmware to your Arduino
and get it connecting to the tuning software (Tuner Studio) before moving on to hardware assembly or wiring etc.
Software setup and configuration on Speeduino can be completed without the need for any additional hardware to be
present (Beyond the arduino itself) and this allows exploration of the software and options available before either an
outlay of significant funds or a significant investment of time.
The following sections of this manual cover how to compile and upload the firmware, as well as creating a new project
in Tuner Studio. It is strongly recommended to read these as a starting point.

About this manual

The contents of this manual are compiled from the Speeduino wiki at https://speeduino.com/wiki/index.php. As an
open source project, this documentation is growing continually and this offline manual is updated nightly with any
changes that are made. This also means that you may come across gaps in the documentation where little information
is currently provided. Please do not hesitate to post on the forum if there is something missing that you need critically
(or even not so critically).
Additionally, if you would like to contribute to the Speeduino documentation, we would love to hear from you! The
preferred method to request wiki access is either via the forum (https://speeduino.com/forum/viewforum.php?f=9)
or via Slack (http://slack.speeduino.com:3000/)

1.2 Connecting to TunerStudio

Tuner Studio is the recommended tuning interface for the Speeduino. It runs onWindows, Mac and linux and provides
configuration, tuning and logging capabilities.
Once you have the firmware compiled and uploaded to your Arduino, you’re ready to setup Tuner Studio in order to
configure and monitor it. If you haven’t yet compiled and uploaded the firmware, refer to the Compiling and Installing

1

https://speeduino.com/wiki/index.php
https://speeduino.com/forum/viewforum.php?f=9
http://slack.speeduino.com:3000/
http://speeduino.com/wiki/index.php/Compiling_and_Installing_Firmware
http://speeduino.com/wiki/index.php/Compiling_and_Installing_Firmware

2 CHAPTER 1. INTRODUCTION

Firmware page.

1.2.1 Downloading Tuner Studio

If you haven’t already, grab a copy of Tuner Studio from: (http://www.tunerstudio.com/index.php/downloads) Tuner
Studio is available for Windows, Mac and linux and will run on most PCs as it’s system requirements are fairly low.
The current minimum version of TunerStudio required is 3.0.7, but the latest version is usually recommended.
If you find Tuner Studio to be useful, please consider paying for a license. This is a fantastic program from a single
developer that rivals the best tuning software in the world, it’s worth the money.

1.2.2 Setting up your project

Create new project

When you first start TunerStudio, you’ll need to setup a new project which contains the settings, tune, logs etc. On
the start up screen, select ’Create new project’

Give you project a name and select the directory you want the project to be stored in. Tuner Studio then requires a
firmware definition file in order to communicate with the arduino. Tick the ’Other / Browse’ button.

http://speeduino.com/wiki/index.php/Compiling_and_Installing_Firmware
http://speeduino.com/wiki/index.php/Compiling_and_Installing_Firmware
http://www.tunerstudio.com/index.php/downloads

1.2. CONNECTING TO TUNERSTUDIO 3

Then browse to the Speeduino source directory, enter the reference subfolder and select speeduino.ini file

Configuration options

Set the configuration parameters for your project. These can be changed any time later on, so don’t worry if you don’t
have them at this time.

4 CHAPTER 1. INTRODUCTION

Comms settings

Select your comms options. The exact port name will depend on which operating system you are running and this
will be the same as in the Arduino IDE. Baud rate should be 115200.

1.3. CREATING A TUNERSTUDIO PROJECT 5

Load base tune

Once the project is created, you’ll need to load in a base tune to ensure that all values are at least somewhat sane.
Failure to do this can lead to very strange issues and values in your tune.

In the Speeduino reference directory, you will find the base tune file to be opened:

And that’s it! Tuner Studio should now attempt to connect to the Arduino and show a realtime display of the ECU.

1.3 Creating a TunerStudio Project

1.3.1 Configuring TunerStudio Project Properties

The menu option for the project properties page can be found here

6 CHAPTER 1. INTRODUCTION

Once opened this page will be seen.

1.3.2 Settings Tab

Temperature Display

Options are :

1.3. CREATING A TUNERSTUDIO PROJECT 7

• Fahrenheit(Default)

• Celsius

Fueling Algorithms

Options are :

• Speed Density Fueling Algorithm (default)

• Alpha-N Fueling Algorithm

Enable_hardware_test

Default option is disabled. If Enabled an additional Tab will appear on the tuning page

Clicking on this will open further options

• Output Testing

Hardware test page.

• Input Testing

8 CHAPTER 1. INTRODUCTION

CAN_COMMANDS

Default option is disabled

1.3.3 Can Devices Tab

Chapter 2

Hardware

2.1 MX5 PNP

2.1.1 Introduction

The Speeduino Miata / MX5 Plug N Play (PNP) box is designed for easy installation on the 1.6L NA6 vehicles using
the 48-pin ECU. This is all 1.6L models from 1989 through 1993 and some 1.6s up to 1995.
The stock ECU for these vehicles have a 2 plug loom connection and look like the below:

WARNING: In particular, please see below in the fuel pump section for details that must be understood prior to
starting

2.1.2 Hardware requirements

The PNP box plugs straight into the stock wiring in place of the original ECU, however some hardware changes are
either recommended or are desirable in most installations.
Most significantly, Speeduino does not operate with the stock AFM on the NA6 engine. This unit can either be
retained or removed, but if being kept in place, the connector to it should be disconnected.

9

10 CHAPTER 2. HARDWARE

Manifold Pressure

For a load reference, it is strongly recommended to run a manifold pressure line to the Speeduino PNP box. This
allows Speeduino to run in the default Speed-Density configuration and is usually a fairly easy installation. The unit
comes with a built-in MAP sensor that supports up to 1 Bar of boost, but is compatible with other external sensors if
more pressure is required.
The 1.6L cars typically come with a suitable MAP port near the throttle body that is capped off in stock form and is
generally the easiest place to take the manifold pressure reference.

5mm or 6mm vacuum hose should be used and there are multiple original holes in the firewall where this can be run.

Throttle Position Sensor

Manual NA6s come with a switch only TPS that provides limited feedback to the ECU. It is highly recommended to
replace this with a Variable TPS (VTPS) that provides a signal indicating the current throttle position. The original
wiring can be used with any 3 wire VTPS

2.1. MX5 PNP 11

Note: If a VTPS is NOT being fitted, the stock TPS should be disconnected and a 1k resistor placed between the
signal line and ground to prevent erratic acceleration enrichment at full throttle.

Inlet Temperature Sensor

In the stock configuration, inlet air temperature is provided by a sensor in the AFM. If the AFM is retained then this
sensor will work if jump wires are run from the AFM to the disconnected connector (See image below), however
as most setups elect to remove the AFM, an additional sensor needs to be added. The recommended sensor is the
GM open air IAT that is common to many GM vehicles. Part number for this is #25036751 and it can be found
fairly cheaply from many online sources, including the Speeduino store (https://speeduino.com/shop/index.php?id_
product=23&controller=product)
The 2 wires from this sensor can be pinned directly into the AFM connector on pins 1 and 6 (It does not matter which
wire goes to which pin):

https://speeduino.com/shop/index.php?id_product=23&controller=product
https://speeduino.com/shop/index.php?id_product=23&controller=product

12 CHAPTER 2. HARDWARE

Wideband O2 Sensor

Whilst not mandatory, the installation of a wideband oxygen sensor and controller is strongly recommended. Any
wideband controller that outputs a 0-5v signal is supported and calibration for common controllers can be found in
the Tools->Calibrate AFR Table dialog.
The wideband analog output signal should be connected to the original O2 sensor wire. This has a convenient connec-
tor in the engine bay, located just next to the coils. This can be found by following the wire from the original sensor.
If not reusing the original narrowband sensor, the connector can be cut from this and attached to the wideband signal.

Fuel pump control

The stock ECU does not perform any fuel pump control as this is taken care of by the AFM. Speeduino however can
control the fuel pump through the original wiring, but requires the removal of the ST_SIG fuse. Failure to remove
this fuse prior to powering the unit on will trip the smart FET that is used on this line, but should not cause permanent
damage if only performed once or twice.
The fuse to be removed is found in the engine bay fuse block:

Alternative control methods If the above method of fuel pump control is either not desirable or not available, an
alternative driver wired to pin 2O on the main connector that can be used for this. Pin 2O originally carries the AFM
signal, however as Speeduino does not use this (And the AFM must be disconnected) it can be used to carry the fuel
pump control.
To do this, a jumper wire is required on the AFM connector per the below:

2.1. MX5 PNP 13

Once the above jumper is in place, the fuel pump pin in TunerStudio should be set to A9.

2.1.3 Configuration and start

Sensor calibration

The stock sensors can use preset calibrations within TunerStudio. The following values should be used if the stock
sensors are retained:
Stock Coolant Sensor (CLT) - RX-7_CLT(S4 & S5)
Stock inlet air sensor (IAT) - RX-7_AFM(S5 in AFM)

14 CHAPTER 2. HARDWARE

Chapter 3

Configuration

3.1 Engine Constants

3.1.1 Overview[edit]

From the Settings menu, select Constants

Here you need to setup the engine constants. Fill out the fields in the bottom section before calculating the Required
Fuel.

15

http://speeduino.com/wiki/index.php?title=API&action=edit§ion=1

16 CHAPTER 3. CONFIGURATION

3.1.2 Settings[edit]

• Control Algorithm: The load source that will be used for the fuel table

• Squirts per Engine Cycle: How many squirts will be performed over the duration of the engine cycle (Eg
720 degrees for a 4 stroke). most engines will not require values greater than 4. For sequential installations,
this should be set to 2 with the injector staging set to ’Alternating’(Internally Speeduino will adjust the squirts
to 1)

• Injector Staging: This configures the timing strategy used for the injectors

• Alternating (Recommended for most installs) - Injectors are timed around each cylinders TDC. The exact
closing angle can be specific in the Injector Characteristics dialog.

• Simultaneous - All injectors are fired together, based on the TDC of cylinder 1.

• Engine stroke: Whether the engine is 2 stroke or 4 stroke

• Number of cylinders: Number of cylinders in the engine. For rotary engines, select 4.

• Injector Port Type: Option isn’t used by firmware. Selection currently does not matter

• Number of injectors: Usually the same as number of cylinders (For port injection)

• Engine Type: Whether the crank angle between firings is the same for all cylinders. If using an Odd fire
engine (Eg Some V-Twins and Buick V6s), the angle for each output channel must be specific.

• Injector Layout: Specifies how the injectors are wired in

• Paired: 2 injectors are wires to each channel. The number of channels used is therefore equal to half
the number of cylinders.

• Semi-Sequential: Semi-sequential: Same as paired except that injector channels are mirrored (1&4,
2&3) meaning the number of outputs used are equal to the number of cylinders. Only valid for 4 cylinders
or less.

• Sequential: 1 injector per output and outputs used equals the number of cylinders. Injection is timed
over full cycle. Only available for engines with 4 or fewer cylinders.

http://speeduino.com/wiki/index.php?title=API&action=edit§ion=2

3.2. INJECTOR CHARACTERISTICS 17

• Board Layout: Specifies the input/output pin layout based on which Speeduino board you’re using. For
specific details of these pin mappings, see the utils.ino file

• MAP Sample Method: How the MAP sensor readings will be processed:

• Instantaneous: Every reading is used as it is taken. Makes for a highly fluctuating signal, but can be
useful for testing

• Cycle Average: The average sensor reading across 720 crank degrees is used. This is the recommended
option for 4 of more cylinders

• Cycle Minimum: The lowest value detected across 720 degrees is used. This is the recommended
method for less than 4 cylinders or ITBs

3.2 Injector Characteristics

3.2.1 Overview

3.2.2 Settings

3.3 IAT Density

3.3.1 Overview

The IAT density curve represents the change in oxygen density of the inlet charge as temperature rises. The default
curve approximately follows the ideal gas law and is suitable for most installations, however if you are seeing very
high inlet temperatures (Either due to heat soak in the engine bay or from turbocharging) the you may need to adjust
the hot end of this curve.

18 CHAPTER 3. CONFIGURATION

3.3.2 Settings

3.4 Acceleration Enrichment

3.4.1 Overview

Acceleration Enrichment (AE) is used to add extra fuel during the short transient period following a rapid increase in
throttle. It performs much the same function as an accelerator pump on a carbureted engine, increasing the amount
of fuel delivered until the manifold pressure reading adjusts based on the new load.
To operate correctly, you must have a variable TPS installed and calibrated.

3.4.2 Theory

Tuning of acceleration enrichment is based on the rate of change of the throttle position, a variable known as TPSdot
(TPS delta over time). This is measured in %/second, with higher values representing faster presses of the throttle
and values in the range 50%/s to 1000%/s are normal. Eg:

• 100%/s = pressing the throttle from 0% to 100% in 1 second

• 1000%/s = pressing the throttle from 0% to 100% in 0.1s

TPSdot forms the X axis of the acceleration curve, with the Y axis value representing the % increase in fuel.

3.5. REV LIMITS 19

Tuning

The enrichment curve included with the base Speeduino tune is a good starting point for most engines, but some
adjustment is normal depending on injector size, throttle diameter etc.
In most cases, tuning of the AE curve can be performed in a stationary environment, though dyno or road tuning is
also possible. Fast and slow blips of the throttle should be performed and the affect on the AFRs monitored using
the live line graph on the AE dialog. This graph shows both TPSdot and AFR values in sync with each other, making
adjustments to the correct part of the AE curve simpler to identify.
If you find that the AFR is initially good, but then goes briefly lean, you should increase the ’Accel Time’ setting, with
increments of 10-20ms recommended.

False triggering In cases where the TPS signal is noisy, spikes in its readingmay incorrectly trigger the acceleration
enrichment. This can be seen in a log file or on a live dash in TunerStudio by the activation of the ’TPSAccel’ indicator
when there is no (or little) throttle movement occurring. Should this occur (and assuming that the TPS wiring cannot
be corrected to reduce noise) then the false triggers can be prevented from triggering AE by increasing the “TPSdot
Threshold” value. This should be increased in increments of ~5%/s, pausing between each increase to observe whether
AE is still being incorrectly activated.

3.5 Rev Limits

3.5.1 Overview

Speeduino includes a spark based rev limited with both hard and soft cuts.
The soft cut limiter will lock timing at an absolute value to slow further acceleration. If RPMs continue to climb and
reach the hard cut limit, ignition events will cease until the RPM drop below this threshold.
Note As this is spark based limiting, fuel only installs cannot use the rev limiter functionality

20 CHAPTER 3. CONFIGURATION

3.5.2 Settings

• Soft rev limit: The RPM at which the soft cut ignition timing will be applied over.

• Soft limit absolute timing: Whilst the engine is over the soft limit RPM, the ignition advance will be held at
this value. Lower values here will have a greater soft cut affect.

• Soft limit max time: The maximum number of seconds that the soft limiter will operate for. If the engine
remains in the soft cut RPM region longer than this, the hard cut will be applied.

• Hard rev limiter: Above this RPM, all ignition events will cease.

3.6 Flex Fuel

3.6.1 Overview

Speeduino has the ability to modify fuel and ignition settings based on the ethanol content of the fuel being used, a
practice typically known as flex fuelling. A flex fuel sensor is installed in the feed or return fuel lines and a signal
wire is used as an input on the Speeduino board.
As ethanol is less energy dense, but also has a higher equivalent octane rating, adjustments to the fuel load and ignition
timing are required.

3.6.2 Hardware

Speeduino uses any of the standard GM/Continental Flex fuel sensors that are widely available and were used across
a wide range of vehicles. These were available in 3 different units, all of which are functionally identical, with the
main difference being only the physical size and connector. The part numbers for these are:

• Small - #13577429

• Mid-size - #13577379

3.6. FLEX FUEL 21

• Wide - #13577394 (Same as the mid-size one, but with longer pipes)

All 3 use a variant of the Delphi GT150 series connector. You can use a generic GT150 connector, but you will have
to clip off 2 tabs from the side of the sensor.
Part numbers :

• Housing (#13519047)

• Pins (#15326427)

• Seal (#15366021)

Alternatively, there is a GM part for a harness connector, part number 13352241: http://www.gmpartsdirect.com/
oe-gm/13352241

Wiring

All units are wired identically and have markings on the housing indicating what each pin is for (12v, ground and
signal) Speeduino boards v0.3.5+ and v0.4.3+ have an input location on their proto areas that the signal wire can be
directly connected to.
On boards earlier to these, you will need to add a pullup resistor of between 2k and 3.5k Ohm. Recommended value
is 3.3k, however any resistor in this range will work. Note that this is a relatively strict range, more generic values
such as 1k or 10k DO NOT WORK with these sensors.

3.6.3 Tuning

• Sensor frequency - The minimum and maximum frequency of the sensor that represent 0% and 100% ethanol
respectively. For standard GM/Continental flex sensors, these values are 50 and 150

http://www.gmpartsdirect.com/oe-gm/13352241
http://www.gmpartsdirect.com/oe-gm/13352241

22 CHAPTER 3. CONFIGURATION

• Fuel multiplier% - This is the additional fuel that should be added as ethanol content increases. The Low
value on the left represents the adjustment to the fuel map at 0% ethanol and will typically be 100% if the
base tune was performed with E0 fuel. If the base tune was made with E10 or E15 however, this value can be
adjusted below 100%. The high value represents the fuel multiplier at 100% ethanol (E100) and the default
value of 163% is based on the theoretical difference in energy density between E0 and E100. Tuning of this
value may be required

• Additional advance - The additional degrees of advance that will be applied as ethanol content increases. This
amount increases linearly between the low and high values and is added after all other ignition modifiers have
been applied.

3.7 Spark Settings

3.7.1 Overview

The Spark settings dialog contains the options for how the ignition outputs will function, including which of the 4
IGN outputs are used and how. They are critical and incorrect values will result in an engine not starting and in some
cases damage to hardware is possible. This dialog also contains a number of options for fixing the ignition timing for
testing and diagnosis.
Please ensure you have reviewed these settings prior to attempting to start your engine.

3.7.2 Settings

• SparkOutputmode - Determines how the ignition pulses will be outputted and is very specific to your ignition
wiring. Note that no matter which option is selected here, ignition signals ALWAYS fire in numerical
order (ie 1->2->3->4) up to the maximum number of outputs. The firing order of the engine is accounted
for in the wiring order.

3.7. SPARK SETTINGS 23

• Wasted Spark - Number of ignition outputs is equal to have the number or cylinders and each output
will fire once every crank revolution. One spark will therefore take place during the compression stroke
and the other on the exhaust stroke (aka the ’wasted’ spark). This method is common on many 80s and
90s vehicles that came with specific wasted spark coils, but can also be used with individual coils that are
wired in pairs. Wasted spark will function with only a crank angle reference (Eg a missing tooth crank
wheel with no cam signal)

• Single Channel - This mode sends all ignition pulses to IGN1 output and is used when the engine contains
a distributor (Typically with a single coil). The number of output pulses per (crank) revolution is equal
to half the number of cylinders.

• Wasted COP - This is a convenience mode that uses the same timing as the ’Wasted Spark’ option,
however each pulse is sent to 2 ignition outputs rather than one. These are paired IGN1/IGN3 and
IGN2/IGN4 (ie When IGN1 is high, IGN3 will also be high). As this is still a wasted spark timing mode,
only crank position is required and there will be 1 pulse per pair, per crank revolution. This mode can be
useful in cases where there are 4 individual coils, but running full sequential is either not desired or not
possible (Eg when no cam reference is available).

• Sequential - This mode is only functional on engines with 4 or fewer cylinders.
• Rotary - See below for full detail

• Cranking advance - The number of absolute degrees (BTDC) that the timing will be set to when cranking.
This overrides all other timing advance modifiers during cranking.

• Spark output triggers - THIS IS A CRITICAL SETTING!. Selecting the incorrect option here can cause
damage to your igniters or coils. Specifies whether the coil will fire when the ignition output from Speeduino
goes HIGH or goes LOW. The VAST majority of ignition setups will require this to be set GOING LOW (ie
the coil charges/dwells when the signal is high and will fire when that signal goes low). Whilst GOING LOW
is required for most ignition setups, there are some configurations that perform the dwell timing on the ignition
module and fire the coil only when they receive a HIGH signal from the ECU.

• Fixed Angle - This is used to lock the ignition timing to a specific angle for testing. Setting this to any value
other than 0 will result in that exact angle being used (ie overriding any other settings) at all RPMs/load points,
except during cranking (Cranking always uses the above Cranking Advance setting). This setting should be set
to 0 for normal operation.

24 CHAPTER 3. CONFIGURATION

Rotary modes

Speeduino currently only supports the ignition configuration used on FC RX7 engines. Support for FD and RX8
ignition setups is in development. The leading / trailing split angle can be set as a function of the current engine load.

• FC - Outputs are configured for the Leading/Trailing setup that was used on FC RX7s. Wiring required is:

• IGN1 - Leading spark
• IGN2 - Trailing spark
• IGN3 - Trailing select

• FD - Not currently supported

• RX8 - Not currently supported

3.8 Dwell

3.9 Overview

The dwell control dialog alters the coil charging time (dwell) for Speeduino’s ignition outputs. Care should be taken
with these settings as igniters and coils can be permanently damaged if dwelled for excessive periods of time.
From the April 2017 firmware onwards, dwell will automatically reduce when the configured duration is longer than
the available time at the current RPM. This is common in single channel ignition configurations (Eg 1 coil with a
distributor) and in particular on higher cylinder count engines.

3.10. SETTINGS 25

3.10 Settings

Note: Both the running and cranking dwell times are nominal values, assumed to be at a constant voltage (Usually
12v). Actual dwell time used will depend on the current system voltage with higher voltages having lower dwell times
and vice versa. See section below on voltage correction

• Cranking dwell - The nominal dwell time that will be used during cranking. Cranking is defined as being
whenever the RPM is above 0, but below the ’Cranking RPM’ values in the Cranking dialog

• Running dwell - The nominal dwell that will be used when the engine is running normally.
• Spark duration - The approximate time the coil takes to fully discharge. This time is used in calculating a
reduced dwell when in time limited conditions, such as mentioned above on single coil, high cylinder count
engines. The limited dwell time is calculated by taking the maximum revolution time at the given RPM,
dividing by the number of spark outputs required per revolution and subtracting the spark duration. Outside
of those conditions, this setting is not used.

• Over dwell protection - The over dwell protection system runs independently of the standard ignition schedules
and monitors the time that each ignition output has been active. If the active time exceeds this amount, the
output will be ended to prevent damage to coils. This value should typically be at least 3ms higher than the
nominal dwell times configured above in order to allow overhead for voltage correction.

http://speeduino.com/wiki/index.php/Cranking

26 CHAPTER 3. CONFIGURATION

3.10.1 Voltage correction

As the system voltage rises and falls, the dwell time needs to reduce and increase respectively. This allows for a
consistent spark strength without damaging the coil/s during high system voltage conditions. It is recommended that
12v be used as the ’nominal’ voltage, meaning that the Dwell % figure at 12v should be 100%.
The correction curve in the base tune file should be suitable for most coils / igniters, but can be altered if required.

3.11 Cranking

3.11.1 Overview

Cranking conditions during starting typically require multiple adjustments to both fuel and ignition control in order
to provide smooth and fast starts. The settings on this dialog dictate when Speeduino will consider the engine to be
in a cranking/starting condition and what adjustments should be applied during this time.

3.11. CRANKING 27

3.11.2 Settings

• Cranking RPM - This sets the threshold for whether Speeduino will set its status to be cranking or running.
Any RPM above 0 and below this value will be considered cranking and all cranking related adjustments will be
applied. It’s generally best to set this to be around 100rpm higher than your typical cranking speed to account
for spikes and to provide a smoother transition to normal idle

• Flood Clear level - Flood clear is used to assist in removing excess fuel that has entered the cylinder/s. Whilst
flood clear is active, all fuel and ignition events will be stopped and the engine can be cranked for a few seconds
without risk of starting or further flooding. To trigger flood clear, the RPMmust be below the above Cranking
RPM setting and the TPS must be above the threshold of this setting.

• Fuel pump prime duration - When Speeduino is first powered on, the fuel pump output will be engaged for
this many seconds in oder to pressurise the fuel system. If the engine is started in this time, the pump will
simply keep running, otherwise it will be turned off after this period of time. Note that fuel pump priming only
occurs at system power on time. If you have USB connected, Speeduino remains powered on even without a
12v signal.

• Priming Pulsewidth - Upon power up, Speeduino will fire all injectors for this period of time. This pulse is
NOT intended as a starting fuel load, but is instead for clearing out air that may have entered the fuel lines. It
should be kept short to avoid engine flooding.

• Cranking enrichment - Whilst cranking is active (See Cranking RPM above), the fuel load will be increased
by this amount. Note that as a standard correction value, this cranking enrichment is in addition to any other
adjustments that are currently active. This includes the warmup enrichment etc.

• Cranking Bypass - This option is specifically for ignition systems that have a hardware cranking ignition
option. These systems were used throughout the 80s and early 90s and allowed ignition timing to be fixed and

28 CHAPTER 3. CONFIGURATION

controlled by the ignition system itself when active (Via an input wire). With this option you can specify an
output pin that will be set HIGH when the system is cranking. The pin number specified is the ARDUINO pin
number.

• Fix cranking timing with trigger - Some (usually low resolution) trigger patterns are designed to align one
of their pulses with the desired cranking advance. This is typically 5 or 10 degrees BTDC. When enabled,
Speeduino will wait for this timed input pulse before firing the relevant ignition output (A dwell safety factor
is still applied incase this pulse is not detected). This option is only made available when a trigger pattern that
supports this function is selected (See Trigger Setup)

3.12 Warmup

3.12.1 Overview

TheWarmUp Enrichment (WUE) dialog contains settings related to the period after start (ie not cranking) but before
the engine has reached normal operating temperature. It allows for modifications to fueling during this time to

3.12.2 Settings

Warmup curve

This curve represents the additional fuel amount to be added whilst the engine is coming up to temperature (Based
on the coolant sensor). The final value in this curve should represent the normal running temperature of the engine

http://speeduino.com/wiki/index.php/Trigger_Setup

3.13. IDLE 29

and have a value of 100% (Representing no modification of the fuel from that point onwards).

Afterstart Enrichment

Afterstart Enrichment (ASE) is a seperate fuel modifier that operates over and above the WUE for a fixed period of
time after the engine first starts. Typically this is a 3 - 10 second period where a small enrichment can help the engine
transition smoothly from cranking to idling.

3.13 Idle

3.13.1 Overview

Compatible Idle Valve Types

There are currently 3 modes of idle control available, using on/off, PWM duty cycle, or a stepper step count, enabled
below a set coolant temperature. These modes cover the most common types of idle mechanisms in use. At this time
only open loop control is available, meaning that an air bypass passage is enabled, rather than a target RPM. Closed
loop control is anticipated at some point in the future, but no commitment is currently made.

Stand-Alone (Non-Electronic)

While not an idle control mode, Speeduino is compatible with stand-alone idle valves that are self-controlling. Exam-
ples of this are thermal wax or bi-metal spring idle or auxiliary air valves like the one below. Internally expanding and
contracting material opens and closes air valves, providing increased air flow and engine rpm when cold for warmup.
Speeduino functions to enrich the cold engine and adjust for the additional air, in the same way it would if you opened
the throttle slightly.

Other examples of stand-alone valves are simple On/Off valves as shown in the next section, controlled by inexpensive
thermal switches like these:

On/Off

This is a simple digital on/off “switch” output by Speeduino that triggers at a selected temperature. It is intended to
control an on/off fast idle valve as found in many older OEM setups, or an open/closed solenoid-type valve that is
chosen for the purpose. In addition to OEM idle valves, examples of valves popular for re-purposing as on/off idle
valves are larger vacuum, breather, or purge valves, and even fuel valves. Idle speed adjustment is generally set only
once, with an in-line adjustable or fixed restrictor, pinch clamp, or other simple flow-control method.

30 CHAPTER 3. CONFIGURATION

Note: On/Off valves can be used in many ways to increase or decrease air flow for various idle purposes in-addition
to warm-up. Examples are use as dashpot valves to reduce deceleration stalling, idle speed recovery for maintaining
engine speed with accessory loads such as air conditioning, or air addition for specific purposes such as turbo anti-lag
air control. See Generic Outputs for control information.

PWM

While similar in construction to many solenoid on/off valves; PWM idle valves are designed to vary the opening, and
therefore flow through the valve, by PWM valve positioning.

Open-loop Duty Cycle Control Speeduino currently operates PWM valves in open-loop, effectively creating an
on/off valve with adjustable flow. While the PWM duty cycle (DC) adjustment affects engine rpm, the adjustment
is for valve opening, and therefore airflow and rpm are affected differently under various conditions. Note some idle
valves default with no PWM signal to the open position, others closed, and some partially-open that close then re-open
with increasing PWM DC. Be sure to research or test your valve type for proper operation.

PWM Settings Settings in TunerStudio include selecting PWM idle control, temperature and DC settings for
warmup, and PWM DC during cranking under the following selections:

Under Idle control type, PWM is selected:

http://speeduino.com/wiki/index.php/Generic_Outputs
https://www.arduino.cc/en/Tutorial/PWM

3.13. IDLE 31

The temperature-versus-DC is selected under the Idle - PWM Duty Cycle selection. Note the relationship between
temperature and PWM DC can be altered by simply moving the blue dots in the curve, or by selecting the table for
manual entry as shown here:

Some engines prefer additional airflow during cranking for a reliable start. This air can be automatically added only

32 CHAPTER 3. CONFIGURATION

during cranking by using the Idle - PWM Cranking Duty Cycle settings. Once the engine starts and rpm rise above
the set maximum cranking rpm, the idle control switches to the previous warmup settings. Note the relationship
between coolant temperature during cranking and PWM DC can be altered by simply moving the blue dots in the
curve, or by selecting the table for manual entry as shown here:

NOTE: Every engine, valve type and tune is different. Suitable settings must be determined by the tuner. Do not infer
any tuning settings from the images in this wiki. They are only examples.

Both 2 and 3 wire PWM idle controllers are supported. In general, the 3 wire models will provide a smoother
response than the 2 wire ones, but the difference is not always significant. For 3 wire valves, 2 of the Aux outputs
will be required.

Stepper Motors

Stepper motor idle controls are very common on GM and other OEM setups. These motors typically have 4 wires
(bi-polar). They must be driven through power transistors or a driver module, such as the DRV8825 stepper motor
driver optional to the v0.4 board. These driver modules can be purchased inexpensively from a variety of vendors on
sites such as eBay, Amazon, etc.
Most stepper idle valves function by turning a threaded rod in and out of the valve body in a series of partial-turn
steps, increasing or decreasing airflow around the plunger (on end of valve below), and into the engine. The idle
airflow bypasses the primary throttle body:

https://www.pololu.com/product/2133
https://www.pololu.com/product/2133

3.13. IDLE 33

Example of a generic DRV8825 driver module on a v0.4 board:

Note the board is mounted at a standoff for air circulation and cooling:

The DRV8825 motor outputs are labeled as A2-A1-B1-B2, and the wiring connection examples are to this labeling.
Check your schematics for the output connections that route to these DRV8825 outputs:
Examples of wiring to the DRV8825 driver:
The GM “screw-in” style used 1982 to 2003 on many models:

Stepper Driver Current Adjustment The DRV8825 stepper driver module includes a potentiometer (adjustable
resistor) indicated by the yellow arrow in the image below. The potentiometer is used for setting the driver’s maximum
current output limit. Because Speeduino uses full-step operation, the current limit is not critical to protect the module,
but should be adjusted to the module’s maximum value for best operation of most automotive stepper IACs.

You will need a multi-meter or volt-meter to make the adjustment as outlined here. In order to set the potentiometer
to maximum current before first use, ensure power to the module is OFF, then gently turn the potentiometer dial
clockwise to the internal limit. Do not force the adjustment beyond the internal stop. Power-up Speeduino with
12V, and use themeter to test the voltage between the center of the potentiometer and any 12V ground point. Note the
voltage reading. Power-down and repeat the test, this time turning the potentiometer counter/anti-clockwise gently
to the internal limit. The test direction that resulted in higher voltage is the correct setting for the module.
Note: Original Pololu modules are typically adjusted clockwise for maximum voltage. However, clone modules may be
either clockwise or counter-clockwise, which makes this testing necessary.

The module’s rated continuous current is up to 1.5A. While the module can supply a peak of 2.2A of current; in
full-step mode and with the potentiometer adjusted to this position, the driver is limited to approximately 70% of full
current, or approximately 1.5A.

Stepper Settings Settings in TunerStudio include selecting stepper idle control, temperature and step settings for
warmup, and open steps during cranking under the following selections:

34 CHAPTER 3. CONFIGURATION

Under Idle control type, stepper is selected. The basic stepper operational settings are also located in this window:

Step time: This is how long (in ms) that the motor requires to complete each step. If this is set too low, the ECU will
be trying to make the next step before the previous one is completed, which leads to the motor ’twitching’ and not
functioning correctly. If this is set longer than needed, the system will take longer to make each adjustment, which
may lead to idle fluctuating more than desired. Typical values are usually 2ms - 4ms. The common GM stepper
motor requires 3ms.
Home Steps: Stepper motors must be ’homed’ before they can be used so the that ECU knows their current position.
You should set this to the maximum number of steps that the motor can move.

3.13. IDLE 35

Minimum steps: In order to allow a smooth idle that isn’t continually fluctuating, the ECU will only move the motor
if at least this many steps are required. Typical values are in the 2-6 range, however if you have a noisy coolant signal
line, this value may need to be increased.

The temperature-versus-steps is selected under the Idle - Stepper Motor selection. Note the relationship between
temperature and motor steps can be altered by simply moving the blue dots in the curve, or by selecting the table for
manual entry as shown here:

Some engines prefer additional airflow during cranking for a reliable start. This air can be automatically added only
during cranking by using the Idle - Stepper Motor Cranking settings. Once the engine starts and rpm rise above
the set maximum idle rpm, the idle control switches to the previous warmup settings. Note the relationship between
coolant temperature during cranking and motor steps can be altered by simply moving the blue dots in the curve, or
by selecting the table for manual entry as shown here:

NOTE: Every engine, valve type and tune is different. Suitable settings must be determined by the tuner. Do not infer
any tuning settings from the images in this wiki. They are only random examples.

NOTE:Refer to the Pololu video for instructions to set the DRV8825 driver current level to maximum formost automotive
full-step stepper motors.

Examples NOTE: While normal DSM stepper function is seen at room temperatures at 3ms, step skipping occurs
just under that speed. Very cold temperatures may cause skipping, thus the recommendation of 4ms. Test for the most
suitable speeds for your setup.

https://www.pololu.com/product/2133/faqs

Chapter 4

Updating firmware

4.1 Compiling and Installing Firmware

With the goal of maximum simplicity in mind, the process of compiling and installing the firmware is reasonably
straightforward.

4.1.1 Latest Stable Firmware

• Date: February 12th 2019

• Details: See https://speeduino.com/forum/viewtopic.php?f=13&t=2599

4.1.2 Installation - Easy Method

The simplest method of installing the Speeduino firmware onto a standard Arduino Mega 2560 is with the Speedy-
Loader utility. SpeedyLoader takes care of downloading the firmware and installing it onto an Arduino without the
need to manually compile any of the code yourself. You can choose the newest firmware that has been released, or
select from one of the older ones if preferred. SpeedyLoader will also download the INI file for the firmware you
choose so it can be loaded into your TunerStudio project.

• Windows: 32-bit / 64-bit

• Mac: SpeedyLoader-1.1.0.dmg

• Linux: SpeedyLoader.1.1.0.AppImage (Will need to be made executable after downloading)

Once the firmware is installed on the board, see Connecting to TunerStudio for more details on how to configure
TunerStudio

4.1.3 Manually Compiling

If you want to compile the firmware yourself, or make any code changes, then the source of both the releases and
the current development version is freely available. Note that manually compiling the firmware is NOT required to
install Speeduino, the easiest (and recommended for most users) method is using SpeedyLoader as described above.

Requirements

• AWindows, Mac or linux PC

• One of the following:

36

https://speeduino.com/forum/viewtopic.php?f=13&t=2599
https://github.com/noisymime/SpeedyLoader/releases/download/v1.1.0/SpeedyLoader.1.1.0-ia32.exe
https://github.com/noisymime/SpeedyLoader/releases/download/v1.1.0/SpeedyLoader.1.1.0-x64.exe
https://github.com/noisymime/SpeedyLoader/releases/download/v1.1.0/SpeedyLoader-1.1.0.dmg
https://github.com/noisymime/SpeedyLoader/releases/download/v1.1.0/SpeedyLoader.1.1.0.AppImage
http://speeduino.com/wiki/index.php/Connecting_to_TunerStudio

4.1. COMPILING AND INSTALLING FIRMWARE 37

• The Arduino IDE. Current minimum version required is 1.6.7, although a newer version is recommended.
• PlatformIO. Can be downloaded from http://platformio.org/platformio-ide

• A copy of the latest Speeduino codebase. See below.

• A copy of TunerStudio to test that the firmware has uploaded successfully

Downloading the firmware

There are two methods for obtaining the Speeduino firmware:

1. Regular, stable code drops are produced and made as releases on Github. These can be found at: https:
//github.com/noisymime/speeduino/releases

2. If you want the latest and greatest (And occasionally flakiest) code, the git repository can be cloned and updated.
See https://github.com/noisymime/speeduino

Older firmware releases If required, older firmware releases and details can be found at Firmware History

Compiling the firmware

• Start the IDE, selectFile >Open, navigate to the location you downloaded Speeduino to and open the speeduino.ino
file.

• Set the board type: Tools > Board > Arduino Mega 2560 or Mega ADK (This is the only board currently
supported)

• Click the Verify icon in the top left corner (Looks like a tick)

At this point you should have a compiled firmware! If you experienced a problem during the compile, see the
Troubleshooting section below.
This video walks through the whole process of installing the firmware on your Arduino from scratch:

Optional (But recommended) There is an option available for changing the compiler optimization level, which
can improve . By default, the IDE uses the -Os compile option, which focuses on producing small binaries. As the
size of the Speeduino code is not an issue but speed is a consideration, changing this to -O3 produces better results
(Approximately 20% faster, with a 40% larger sketch size) To do this, you need to edit the platform.txt file:

• Make sure the Arduino IDE isn’t running

• Open the platform.txt file which is in the following locations:

• On Windows: c:\Program Files\Arduino\hardware\arduino\avr
• On Mac: /Applications/Arduino/Contents/Resources/Java/hardware/arduino/avr/
• On Linux:

• On the following 3 entries, change the Os to be O3:

• compiler.c.flags
• compiler.c.elf.flags
• compiler.cpp.flags

• Save the file and restart the Arduino IDE

Note: This is NOT required if using PlatformIO, the above optimisation is applied automatically there

http://arduino.cc/en/Main/Software
http://platformio.org/
http://platformio.org/platformio-ide
http://www.tunerstudio.com/index.php/downloads
https://github.com/noisymime/speeduino/releases
https://github.com/noisymime/speeduino/releases
https://github.com/noisymime/speeduino
http://speeduino.com/wiki/index.php/Firmware_History
http://speeduino.com/wiki/index.php?title=Compiling_and_Installing_Firmware&action=edit§ion=4#Troubleshooting

38 CHAPTER 4. UPDATING FIRMWARE

Installing

Once you’ve successfully compiled the firmware, installation on the board is trivial.

• Plug in your Mega 2560 to a free USB port

• If you’re running an older version ofWindows and this is the first time you’ve used an Arduino, you may need
to install drivers for the Arduino serial chip (USB-UART or “USB adapter chip”).

Most official boards and many non-official versions use the ATMega16U2 or 8U2, whereas many of the Mega2560
clone boards utilize the CH340G IC. Both types work well. The serial chips can generally be identified by appearance:
ATMega16U (square IC) - drivers included in Windows, MacOS and Linux:

or
WCH CH340G (Rectangular IC) - uses “CH341” drivers from WCH for Windows:

WCH-original CH340/CH341 drivers for other systems (Mac, Linux, Android, etc) may be found here.

• In Arduino IDE; select the Mega2560: Tools > Board

• Select your system’s serial port to upload: Tools > Serial Port

• Hit the Upload button from the top left corner (Looks like an arrow point to the right)

Assuming all goes well, you should see the IDE message that avrdude is done, similar to this:

http://www.wch.cn/downloads/file/65.html
http://www.wch.cn/downloads/CH341SER_ZIP.html

4.1. COMPILING AND INSTALLING FIRMWARE 39

Verifying Firmware

The firmware is now loaded onto your board and you are now able to move onto Connecting to TunerStudio.
Optionally, you may perform a verification of the firmware by using the Arduino IDE’s Serial Monitor. This can be
started by selecting ’Serial Monitor’ from the Tools menu.
In the window that appears, enter a capital “S” (no quotes) and press Enter. The Mega should respond with the year
and month of the code version installed (xxxx.xx):

Speeduino 2017.03

NOTE: Ensure the baud rate is set to 115200
You can also enter ”?” for a list of queries from your Mega.

Troubleshooting

Incorrect Arduino board selected If you see the following (or similar) errors when trying to compile the firmware
and the solutions:

scheduler.ino:317:7: error: ‘OCR4A’ was not declared in this scope
scheduler.ino:323:8: error: ‘TIMSK5’ was not declared in this scope
scheduler.ino:323:25: error: ‘OCIE4A’ was not declared in this scope

You may have the wrong kind of Arduino board selected. Set the board type by selecting Tools > Board > Arduino
Mega 2560 or Mega ADK

Entire Speeduino project is not opened The following can occur if you have only opened the speeduino.ino file
rather than the whole project.
speeduino.ino:27:21: fatal error: globals.h: No such file or directory
Make sure all the files are contained within the same directory, then select File->Open and find the speeduino.ino
file. If you have opened the project correctly, you should have multiple tabs along the top:

http://speeduino.com/wiki/index.php/Connecting_to_TunerStudio

40 CHAPTER 4. UPDATING FIRMWARE

4.1. COMPILING AND INSTALLING FIRMWARE 41

�Coll-attribution-page�

	Introduction
	Introduction
	Connecting to TunerStudio
	Downloading Tuner Studio
	Setting up your project

	Creating a TunerStudio Project
	Configuring TunerStudio Project Properties
	Settings Tab
	Can Devices Tab

	Hardware
	MX5 PNP
	Introduction
	Hardware requirements
	Configuration and start

	Configuration
	Engine Constants
	Overview[edit]
	Settings[edit]

	Injector Characteristics
	Overview
	Settings

	IAT Density
	Overview
	Settings

	Acceleration Enrichment
	Overview
	Theory

	Rev Limits
	Overview
	Settings

	Flex Fuel
	Overview
	Hardware
	Tuning

	Spark Settings
	Overview
	Settings

	Dwell
	Overview
	Settings
	Voltage correction

	Cranking
	Overview
	Settings

	Warmup
	Overview
	Settings

	Idle
	Overview

	Updating firmware
	Compiling and Installing Firmware
	Latest Stable Firmware
	Installation - Easy Method
	Manually Compiling

